SIAM J. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, February 1985 001

AN OPTIMAL SIMULATION OF
COUNTER MACHINES*

PAUL M. B. VITANYIt

Abstract. Each multicounter machine can be simulated by an oblivious one-head tape unit in real-time,
using logarithmic space. The solution uses redundant symmetric number representation and implicit recursion.
It represents a new positional representation for (vectors of) the integers.

Key words. counter machines, multicounter machines, real-time simulation by one-tape Turing
machines, redundant symmetric number representation, implicit recursion, counting, coding

1. Introduction. The idea of counting, that is, adding or subtracting a unit from
any given number, to obtain another one, is the substrate of arithmetic if not of all of
mathematics. Thus, it is frequently necessary in computing to maintain many counts
simultaneously, while the only information we want to extract at any time is the set
of currently zero counts. The process of storing several integer counts, each count
independently being incremented or decremented by a unit in each step, governed by
the current input and the set of zero counts, is abstracted and formalized in the notion
of a multicounter machine. Such machines have numerous connections with both
theoretical issues and more or less practical applications. It is of considerable interest,
for many questions, to implement multicounter machines as efficiently as possible. We
shall show that counting is basically simple, in the computational complexity sense of
the word, by demonstrating that each multicounter machine can be simulated in
real-time by an oblivious one-head tape unit using minimal storage space. Since the
presented implementation is optimal in all commonly considered resources at once,
the two decade old quest for better simulations of multicounter machines by Turing
machines is finalized in one stroke.

Doing arithmetic presupposes number representations. Different representations
are better suited to different arithmetical operations. All of arithmetic can be performed
by multicounter machines. Because we shall simulate a multicounter machine by a
one-head tape unit, we need to straightforwardly represent a vector of integers as a
linear string. No known representation for single integers allows the counter steps to
be performed by an oblivious one-head tape unit without unbounded time loss in
between simulated steps. Neither does any known representation, for pairs of integers,
allow the counter steps to be performed by a one-head tape unit, oblivious or not,
without unbounded time loss in between simulated steps. To achieve our objective,
we in effect have to develop a new representation, with the required properties, for
vectors of integers.

Multicounter machines and Turing machines. For the present purpose, machines
are viewed as ftransducers, that is, as abstract storage devices connected to input and
output terminals. Thus we consider a machine as hidden in a black box with input and
output terminals. Consequently, the presented simulation results concern the input-
output behavior of black boxes and are independent of input-output conventions, or
whether we want to recognize or to compute. The abstract storage structure embodied
by a k-counter machine (k-CM) consists of a finite control connected to an input and

* Received by the editors February 8, 1983. A preliminary exposition of this work appeared in the
Proceedings of the 14th ACM Symposium on Theory of Computing (STOC) held in San Francisco, California,
May 5-7, 1982. The present work is registered at the Mathematical Centre as IW 216/82.

T Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.

1

2 PAUL M. B. VITANYI

an output terminal, and k counters each capable of containing any integer. The states
of the finite control are partitioned into polling and autonomous states. (Here we can
assume without loss of generality that all states are polling states.) At the start of a
computation the finite control of the k-CM is in a designated initial state and all
counters are set to zero. A step in a k-CM computation is uniquely determined by
the state of the finite control, by the symbol scanned at the input terminal if the state
is a polling state and the set of counters which contain zero. The action at that step
consists of independently altering the contents of each counter by —1, 0, or +1, changing
the state of the finite control and producing an, possibly empty, output string. Thus
the machine effects a transduction from input strings to output strings. If you will, the
input and output may be thought of as written on input and output tapes, on which
the resident access pointers (heads) are steered by the finite control. The steering
commands issued can be viewed as part of the output. Above we closely followed the
formulation in [2] where also a more precise definition can be found. For the more
standard concept of multitape Turing machines consult [2],[6]. Note that, for us, a
one-tape Turing machine consists of a finite control connected to an input and output
terminal, and a single head storage tape. A one-head tape unit is a one-tape Turing
machine.

Simulation. A machine A simulates a machine B in time T(n) if, for all n>0,
the input/output behavior of B during the first n steps, the atomic inputs and outputs
ordered according to their occurrences in time, is exactly mimicked by A within the
first T'(n) steps. That is, if for every input sequence i, iy, - - - read from the input
terminal: (i) the output sequences written to the output terminals by A and B are the
same, and (i) if H=t, =+ =, =t,,, - - - are the steps at which B reads or writes a
symbol, then there are corresponding steps t{ S t5=- - - St} = t}4, - - - at which A reads
or writes the same symbols, and ¢} = T(t;) for all i= 1. For a linear time simulation it
is required that T(n)e O(n); for a simulation with constant delay that t,.,—t,=
¢(t,+,—t,) for some fixed constant ¢ and all n; for a real-time simulation that T(n) = n.
It is well known that a constant delay simulation can always be sped up to a real-time
one, but not a linear time simulation in general. We use simulation in the above strong
sense of on-line simulation [6] throughout.

Obliviousness. A Turing machine is oblivious if the movements of the storage tape
heads are fixed functions of time independent of the particular inputs to the machine.
Many problems seem inherently oblivious: the usual algorithms for computing the
four main arithmetic operations, a table look-up by sequential search, can easily be
programmed obliviously without sacrificing worst case time efficiency. Other tasks like
binary search or sorting are, it appears, nonoblivious in nature. For many purposes,
there are excellent reasons to restrict attention to oblivious computations [6], [7]. Here
we show yet another, more heuristic, motive for doing so. Viz., restriction of the
considered model of computation to its oblivious version may shift the emphasis in
the problem to be solved, from one difficulty to a completely different one, thus
directing us to a solution. Whereas the difficulty in real-time simulating k-counter
machines by k’-tape Turing machines, k' < k, stems from the fact that k' <k, the same
problem with the simulating machine restricted to its oblivious version knows as
difficulty but the obliviousness of the simulating device alone.

For suppose we can simulate some abstract storage device S in time T(n) by an
oblivious Turing machine M. Then we can also simulate a collection of k copies of S,
say S;, S,, -+ -, S, interacting through a common finite control, by dividing all storage
tapes of M into k tracks, each of which is a duplicate of the corresponding former
tape, and by an appropriate modification of M’s finite control. The same head move-

OPTIMAL SIMULATION OF COUNTER MACHINES 3

ments of the resulting machine M’ can now do the same job, on each of the k collections
of tracks, as they formerly did on the collection of tapes of the original machine M.
So the resources used by M’ are, apart from sizes of finite control and alphabets, the
same as those used by M. In particular this holds for time and storage complexity.
Therefore the following two statements are equivalent:
(i) We can simulate an abstract storage device S by an oblivious Turing machine
M in time T'(n) and storage S(n).
(ii) For each k>0 we can simulate a collection of k copies of S, interacting
through a common finite control, by an oblivious Turing machine M' in time
T(n) and storage S(n), where M’ has the same tape/head constellation as M.
We are in particular interested in the following specialization of the above maxim.

Define the quintessential counter S as a 1-CM with input commands “add §,
8e{—1,0,1}. Ateach step S reads an input command from the input terminal, modifies
the stored count in the obvious way, and outputs either “count equal zero” or “‘count
unequal zero” in concordance with the current state of affairs.

ProPosITION 1. If we can real-time simulate the quintessential counter S by an
oblivious one-head tape unit then we can real-time simulate each multicounter machine
by an oblivious one-head tape unit (which for each multicounter machine makes the
same head movements as a function of time alone).

Background. Counter machines are relatively old devices in computer science.
Unrestricted 2-counter machines were shown to be as powerful as Turing machines
in [5]. Subsequently the efficiency of implementations on Turing machines was investi-
gated. On linear arrays, as formalized by Turing machines, the use of a tally representa-
tion for each count either requires a separate access pointer (storage tape head) per
count or unbounded update time in between simulated steps. Curiously, even with the
use of a separate pointer for each count, binary representations also require unbounded
update time, although minimal storage space. This sorry state of affairs was improved
in [1], [2] which both presented linear array simulations using minimal space, while
[1] eliminated the unbounded update time at the cost of retaining all access pointers
and [2] eliminated all access pointers but one at the cost of retaining unbounded update
time. Thus, [2] exhibited the classic linear time/logarithmic space simulation of multi-
counter machines by one-tape Turing machines. Efforts to reduce this simulation to
a real-time one using a fixed number of storage heads failed, but did produce some
weaker problems. For the Origin Crossing Problem, where the task is to recognize
the set of sequences of unit basis vectors in k-space, k = 1, which leave from and end
in the origin, an ingenious solution by a real-time one-tape Turing machine was
constructed in [1]. The result implies that each k-counter machine can be real-time
simulated by a k-tape Turing machine in logarithmic space, k = 1. Next in difficulty
comes the Axis Crossing Problem, where the task is to recognize the set of sequences
of unit basis vectors in k-space, which leave from the origin and end in one of the
(k—1)-dimensional hyperplanes with one zero coordinate, k>1. For no k>1, a
real-time solution on but a (k—1)-tape Turing machine was found, for the k-
dimensional Axis Crossing Problem, after its proposal in [2].

In [8] we made the linear time/logarithmic space one-tape solution of [2] oblivious,
retaining the same resource bounds. This is a matter of some significance, since by its
nature an oblivious Turing machine is usually far slower than a nonoblivious one. For
example, each oblivious multitape Turing machine needs n log n steps to simulate n
steps of a single pushdown store, although an oblivious 2-tape Turing machine can
achieve this bound [6]. For oblivious one-tape Turing machines the lower bound on
this simulation time increases, perhaps, up to n°. Due to the compact way the counts

4 PAUL M. B. VITANYI

can be stored, the situation for counter machines was somewhat better. In [7, Cor. 2]
it was shown how to simulate each multitape Turing machine, using at most S(n)
storage in n steps, by an oblivious 2-tape Turing machine in n log S(n) steps and S(n)
storage. So the previously best simulation of multicounter machines, by combining [2]
and [7], yielded a n log log » time and log n storage simulation by an oblivious 2-tape
Turing machine. Since the thrust of [8] was to achieve fast low-cost combinational
logic networks implementing multicounter machines, as an expedient intermediate
next result a real-time simulation by, basically, a linear iterative array with a restricted
amount of oblivious local rewriting was proposed. Although not very elegant, this
intermediate model served its purpose in yielding an optimal implementation of
multicounter machines on combinational logic networks and, perhaps more important,
the ideas embodied in the method suggest the approach to the final simulator presented
here.

Outline of the paper. The objective is to construct an oblivious one-head tape unit
capable of simulating any multicounter machine in real-time. In § 2 a stylized version
of such a simulator is exhibited and shown to work. This version, one of many which
are possible on the basic underlying principles, is chosen because it is at once amenable
to short rigorous proofs of validity and achieves, it seems, the utmost frugality of
machinery. To a large extent this gain is obtained at a cost of loss of intuition as to
how and why it does what it is supposed to do. To counterbalance this expository
defect, we insert some informal comments. The reader may also follow the genesis of
the result by consulting [8] and the earlier version in the STOC Proceedings. In § 3

we enlarge on the optimality of the result, its connection with number representations,
and on additional fruit borne.

2. The simulation. After some vain attempts to real-time simulate multicounter
machines by Turing machines with a fixed number of tapes, one gets the feeling that,
anyway, a real-time simulation by an oblivious one-head tape unit is out of the question.
In the event, intuition is wrong; but let us informally consider the matter in some
more detail. It quickly becomes apparent that updating a count, in real-time on an
oblivious machine, requires a redundancy in notation which seems to make a simul-
taneous real-time check for zero impossible. To achieve the latter, we allow only
encodings of integers such that an integer is zero iff the scanned position of the encoding
(the “first” position, so to speak) shows this uniquely. Since the head motion is supposed
to be oblivious we must, roughly speaking, update each “initial” Q(log i) length segment
(situated around the head) of the encoded integer within each interval of i steps, for
all iz 1. While moving the head to update longer segments of code in an oblivious
manner, we may have actually stored small counts which may reach zero during this
motion. So the machine has to simultaneously shift and update smaller segments of
code, while updating larger segments of code, and so on recursively down to the
smallest segments. Such considerations force compact encodings, and, apart from giving
us some feel for what behavior is necessarily involved in a simulation as desired, they
show that the integer representation used must be positional in nature.

Outline of the simulation. The simulation splits naturally into two parts. First we
introduce a redundant binary representation for the integers, and formulate certain
minimal requirements for real-time maintaining the representation of the stored integer
under the counter operations. These requirements consist in a fixed strategy, of
accessing constant length segments of this representation, for all input streams. Second,

we construct an oblivious one-head tape unit capable of implementing these require-
ments in real-time.

OPTIMAL SIMULATION OF COUNTER MACHINES 5

The current count of the quintessential counter, as figuring in Proposition 1, is
stored on the single tape in a (garbled form of) redundant binary representation, with
marked most significant nonzero digit and leading distinguished blank symbols. As a
consequence of preserving some invariants, the stored count equals zero iff the “first”
position of the representation is a blank. Since this first position shall reside in the
finite control of the simulator, that situation is instantly recognized.

Hence the problem is solved, if we can real-time update the representation of the
current count while preserving the invariants. In the chosen representation it suffices
to update each segment of the 2ith through (2i+3)th position of the representation
at least once within each interval of 3' consecutive steps, for all i =0, while also
processing the current input commands, by an update of the first two positions, in
each step. Intuitively speaking, the timing allows us to propagate carries and borrows
(negative carries) fast enough. Although there is a considerable freedom about how
to implement the required datamovement on an oblivious one-head tape unit, we
choose for frugality in attendant machinery and minimal bit compression (that is, a
small storage tape alphabet). Therefore, we divide the representation into blocks of
two digits each, and store the first three blocks in the finite control. Each digit of the
representation residing on the tape is tagged with an opening or a closing bracket, viz.
the first digit of a block with an opening bracket and the second one with a closing
bracket. To access each segment of the 2ith through (2i+ 3)th digits of the representa-
tion at least once in every interval of 3 steps, we develop a method of recursively
transporting the digits of block j, from one side of the combination of the first i blocks
to the other side, back and forth, for all i,j, 1=i<. This transport, which entails
moving the total combination of the first i blocks, in its turn supplies the necessary
motion for the combination of the first i +1 blocks, while it also allows the single head
to access blocks i+2 and i+ 3 within the timing constraints. The single head, without
being able to determine the positional index of the scanned digits (since there will be
all in all but four tags, viz. two types of opening brackets and two types of closing
brackets), preserves a topology which allows it to single out and update due segments.
The net effect will be that, for all i simultaneously, the combination of the first i blocks
acts like a very fat head, moving slower the greater i is, but fast enough to do the
same job to blocks i+ as the head itself does to blocks j, for all i,j=1.

On notation. To be able to express and prove the subsequent constructions, it is
convenient to introduce some notation first. The objects operated upon are linear
arrays or strings of symbols from a finite alphabet. Arrays can be finite or one-way
infinite. In a one-way infinite array A[0:0], A[0] is the first element and A[i] is the
(i+1)th element, i = 0. A[i:j] denotes the (j—i+1)-length subarray consisting of the
(i+1)th through (j+1)th elements, 0=i=j The concatenation A[i:jlA[j+1:k]
equals A[i: k], 0=i=j<k, and we identify A[i:i] with A[i], i=0. Finite arrays are
treated similarly. Arrays are operated upon by functions from arrays to arrays. Since
these functions shall be partial we introduce the undefined array . By definition, for
any array A, JA=AJ=. The undefined array should be distinguished from the
empty array € for which by definition, for any array A, éA = Ag = A. Mappings from
arrays to arrays are defined in terms of length preserving functions from finite arrays
to finite arrays. If a function P maps an array S to an array S’', with S, S’ finite and
of equal length, then we write P: $— S’. By definition P: &+ for all functions P.
Functions induce relations amongst one-way infinite arrays in essentially two ways. In

0
the first type of relation = the argument of Q determines integers i, j, i = j, and for all
arrays A[0:00], A’[0:00] if P:A[i:j]— A'[i:]], for a function P associated with Q,

6 PAUL M. B. VITANYI

Q
A'f0:i~1]=A[0:i—1] and A'[j+1:0]=A[j+1:00], then A= A'. In this case,
o P
clearly = is a function from one-way infinite arrays to one-way infinite arrays. In the
I 4
second type of relation =, P is a function, and A= A’ if A=5,5S,, A'=5,5'S, and
P: S— S'. 1t will be shown that all such relations of the second type we consider are
also functions when restricted to a set of well formed arrays. In both cases, if for

Q Q Q

some = and some array A, there is no A'#J such that A= A’, then A= O.
A . Q .. i

Considering the relation= amongst arrays as rewriting, the rewriting shall thus be

Q Q

proved to be always monogenic, that is, if A= A’ and A A” then A"=A". We
compose functions Py, P,,- -+, P, to a function P, or decompose or expand a function
P into a sequence of constituent functions Py, P,,-- -, P, as follows. If for some

P
P, P, e P, %nd all argays A there exist arrays A;, Ay, - - -, A, such that A A,

and A r=1> A r=§> Ay -l:=">A,, then P=P,; P,;---; P, The function composition
operator ““;” denotes sequential rewriting from left to right. Whenever necessary, we
denote the value of an array A at time £, 120, by A' and A° is the initial array. We
dispense with the superscript if ¢ is understood or when we view A as a variable.

Main objective. We concentrate on real-time simulating the quintessential counter
of Proposition 1 by an oblivious one-head tape unit.

2.1. An integer representation. Consider a positional base 2 notation for rep-
resenting the integers, which may be called redundant symmetric binary, using the
digits —2,—1, 0, 1, 2. So the integer ¢ represented by coc1¢; * * * Cmy ¢ €{—2,~1,0, 1, 2},
equals Y/, ¢;2". Such a representation is binary because of the weight of digits in
distinct positions, symmetric because of the used digits, and redundant since each
integer has infinitely many representations, even without leading nonsignificant zeros.
To represent the stored integer count on a, potentially infinite, linear tape we essentially
use a restricted version of this representation, with a marked most significant nonzero
digit and distinguished leading nonsignificant zeros. Let A={—2,-1,0,1,2} and A=
{-2,-1,0, 1, 2}. The barred digits have the same value as their nonbarred counterparts,
A—{0} is reserved for the most significant nonzero digit, and “0”’, called blank, is
reserved for the nonsignificant zeros. Let 2 =AU A and let code: Z 2" be a function
of the integers into the power set of 2%, where =% is the set of one-way infinite strings
over X. The function code satisfies restrictions (A)-(D) below, for all ¢y¢, -+ ¢+ - €
code (¢), ceZ.

Separation of a finite significant initial segment and nonsignificant zeros:
3i=0[¢;=0] & Vi>0(¢;=0= (c.,€A& ¢, =0))
& (Ciez_{()} = C,‘._[€ A)]

(A)

Correct representation:
(B) T a2=c
i=0
To identify representations of 0 by just a small initial segment:
(©) Viz0[(cr1>0=¢20) & (¢4:<0= ¢;=0)).

Under (A‘)—(.C), (—2)'010% represents the integer 2 for all i = 0. To prevent racing
of the most significant nonzero digit to the first position, in just a few steps of the
desired single head real-time simulator:

(D) Viz0[iisodd = |¢|<2].

OPTIMAL SIMULATION OF COUNTER MACHINES 7

Now if ¢o¢) * * * Co1Cm* * *€code (¢), with ;e Afor 0=i=m—1,and ;e Afor m=i,
then for m =0 we have 0=|c|=2,for m = 1 we have 2 =|c|=4 and in general for m = 2:

2" —r=lcl=2m 4y
with
m—2 m—1 m—1

i m_z . . .
r=2 ¥y 2+ ¥y 2 r=2 3y 2+ y 2

i=0,i even i=1,iodd i=0,ieven i=1, i odd

which yields
m—3<log,|c|<m+2.

Thus the length of the initial significant segment of the representation of ceZ
follows by and large the length of the usual binary representation of |c|. We are
particularly interested in representations for zero. Note that the following proposition
holds for code functions satisfying only (A)—(C).

PROPOSITION 2. Let ¢oC; * * * CpCpmy - - - €code (¢) with ceZ. Then ¢ =0 iff ;=0
forall iz 0 iff co=0.

Proof. By (A) ¢o=0 iff ;=0 for all i= 0. So we only have to prove ¢ =0 iff ¢, =0.
Assume ¢; =0forall i= 0. By (B) ¢ =0. Assume ¢; # 0 for some i = 0. Then by (A) there

exists a least m =i such that c,~=5 for all j>m, and |c,,|#0. For m=0, |c|=1, and
for m=1 we have |c|= 2. For m=2:
lel=] % 2 (by (B))
m—1 .
z|2"-1 Y ¢2 (triangle inequality)
i=0
m-2
z2m-2 § 2 (by (C))
i=0
=2. |

2.2. Maintenance of the count. Let S be the simulated quintessential counter and
let 8,,8,,--+,8,---,8€{-1,0,1}, be any fixed sequence of unit additions/subtrac-
tions. So at time t=0, S contains the integer Z:=1 8;, We maintain the count in an
array C[0:00] such that the value of the array at time t =0 is C'[0: 0] code (Z:=1 8i)s
for any such input stream. The initial array C°[0: 0] at time ¢ =0 is defined by C[i]=0
for all i=0, and therefore C°[0:o0]ecode (0). In the rth simulated step, t=1, the
current value C'™' of the array is mapped to the next value C' by a function
COUNT (¢, 8,). The mapping COUNT is defined in terms of a composition of mappings,
with the aid of an auxiliary function I:N- 2", called the parameter selection function,
which has as values sets of bounded cardinality (cardinality four suffices).

DerFiNiTION. For t=1, let I(t)={i, {_y, -, i} with §>i_,--->i;, and let
8€{-1,0,1}. COUNT (4, 6) is defined as a composition of mappings:

def

COUNT (t, 8) = UPDATE (i;); UPDATE (i;—,); - - - ; UPDATE (i,); INPUT (5).

Hence

COUNT(1,8)

CE/——= C', with C'# {7,

8 PAUL M. B. VITANYI

if there exist G, C,_y, - - -, C; # & such that
UPDATE (i) _ UPDATE(i,_,) UPDATE (i)

™

INPUT(5) ,
1F > Cioy v - vt = C, E > C'.

COUNT(1,8)

In all other cases C
DeFiNiTION. Let ieN and let C[0:00] be a one-way infinite array, C # .

C[O . 00] UPDATE (i) C'[O : m],

C'[0:0]# &, if UPDATE: C[2i:2i+3]— C'[2i:2i+3]# < and C'[0:2i—1]=
C[0:2i—1] and C'[2i+4:0]=C[2i+4:00], with the function UPDATE: *->3*

defined below. For convenience we first define UPDATE: A* - A% and then extend the
mapping to 2*.

UPDATE: 20 x y~» 01 xy for xye{00,01,0-1,10,11, 20,21}
2 0 x y=» 0~-1x+1y forxye{—10,-20,-1-1,-2-1}
21 x y—= 0 0x+1y for xye{00,01,10,11}

21 0-1-» 00 -10
212 y»g for ye{0, 1}
-2 0 x y—» 0-1 xy forxye{00,0~-1,01,-10,-1-1,-20, —2—1}
-2 0 x y=» 0 1x—1y forxye{10,20,11,21}
-2-1 x y=» 0 O0x—1y forxye{00,0-1,-10,-1-1}
-2-1 0 1~ 00 10
-2-1-2 y—> for ye{0, ~1}
v w x y=» v w xy forog{-2,2}
v wx y—~ ¢ for vwxy not in the above list.

Extension of UPDATE to mappings from ¢ into =*: if vwxy ¢ A* then
UPDATE: vwxy — v'w'x’y’

Pt !

for all vwxy, v’ w'x’y" € A*(A—{0}){0}* U {0000} such that the unbarred version of the
mapping is in the previous list, and UPDATE: vwxy— & in all other cases. (Recall
that if V is a finite alphabet, then V* is the set of all finite strings over V including
the empty string &.)

DEerINITION. Let § €{—1,0, 1} and let C[0:c0] be a one-way infinite array, C # <.

INPUT(8)
C[0: 0] F=—== C'[0:],

C'[0:0]# &, if INPUT,::C[0:1]—C'[0:1]#Q and C'[2:0]=C[2:00] with
INPUT;: 3% - 32 defined below. For convenience we first define INPUT,: A%?- A% and
then extend the mapping to 2°.

INPUT_;: x yr x—1y forxye{00,0-1,-10,-1-1,10,11}
0 1~ 10
x y— @ forxye{-20,-2-1,20,21}

INPUT,: X yw xy forxye{00,0—1,-10,-1-1,10,01,11}
x y—» O for xy € {—20, -2~1, 20, 21}

INPUT;: x yw x+1y forxye{00,01,10,11,-10,-1-1}

0-1—- -10
x y—~» O for xy € {—20, ~2~1, 20, 21}.

Extension of INPUT, to mappings from £2 into £*: if xy ¢A® then
INPUT,: xy — x'y'

for all xy, x'y’ € A*(A—{0}){0}* U {00} such that the unbarred version of the mapping
is in the previous list and INPUT;: xy+> & in all other cases.

OPTIMAL SIMULATION OF COUNTER MACHINES 9

If for some array C[0:c0] and P=UPDATE (i), i=0, we have
P
UPDATE: C[2i:2i+3]— then CE &, by definition. If for some array PC[O:oo]

and P=INPUT (8), 6€{~—1,0,1}, we have INPUT;: C[0:1]— then C=), by
definition. For all Pe{INPUT (§), UPDATE (i)|6&{-1,0,1}, i=0} we have by

definition & é) &, and thus B isa mapping from £ U {&} into ¥ U {<} and not just
a relation. Basically, INPUT (8) adds the current input to the currently represented
integer and UPDATE (i) propagates carries and borrows in a segment of the rep-
resentation, both preserving representations from the code function.
For each input sequence D=8, 8,,- -+, 8, -+, with §,€{—1,0, 1} for t=1, the
sequence of mappings
def

COUNT (I, D) = COUNT(1, 8,); COUNT (2, 8,); - - - ; COUNT (£, 8,); - - -

defines a sequence of (a priori possibly undefined) arrays C °,C',---,C' - such
that C° is the all-blank initial array C°[0:00]=0%, and for all r=1:

cr! COUNT(1.5,)
Decomposing COUNT (t, §,) into its constituent functions for all t= 1, with I(¢)=
{eicnys Bpy-1> 5 Bea} and dygey > dyy-1 > -+ - > i1, We obtain for each input sequence
D=8,,8,---,8," - the sequence of basic mappings

t

INPUT (81); UPDATE (iz,[(z)); et

In this sequence, the subsequence of mappings

INPUT (&,)

is said to constitute the rth step of the maintenance of array C. Starting from C*~! the
sequence of intermediate arrays defined by the tth step is

Ct_l(= Cx-—l,O): Cz,z(z), Cz,l(x)—~1’ T, Cr,u Cz,o(= C‘)
defined by

UPDATE (i, .,,) INPUT(5,)

Ct—l,O Cx,l(r) e Ct,0= C.
Note that in the decomposition of COUNT (I, D) in the basic mappings UPDATE (-)
and INPUT (-) the parameter ¢ does not occur explicitly; the sequence of basic
mappings is defined totally by the sequence of successive values of I and the sequence
of inputs. This is important in the next sections. In this section we show in Lemma 1
that, for any input sequence D = §,, 8,5, *,

CO, Cl,l(l)’ crty, Cl,l € code (0) U {@}

and for all =1

-1
Cio1o(= C'_l), Ciiry» "+ 5 C1 € code () 3i> U{a}.
i=1

In Proposition 3 it is demonstrated that for certain choices of the parameter selection
function I we have that C,;# for all t=1 and all j, I(t)=j=0, whence C'e
code (¥;_, &) for all t=0.

10 PAUL M. B. VITANYI

LEmma 1. Let array Cecode(c) for some integer . If, for some iZ0,
il C'.C'#@, then C'ecode(c). If, for some 8e{-1,0,1},
C’',C'# @, then C'ecode (c+8).
UPDATE (i)

Proof. Let C e code (c) for some integer ¢ and C—=———=C"',C’ # &, for some
i20. If |C[2i]| # 2 then C’ = C and there is nothing to prove. So let IC[?z]l =2. ;r,-li?f’
for j<2i and j>2i+3, C'jl= C[]g. Since alsq Yimo C'2i+j1277 =
T3 CL2i+[12%", we have $oo, C'[i12' =Y 1o, C[i12' =c. It is easy to check from the

=m0 UPDATE (i)

definition of UPDATE (i), that if (A), (C) and (D) hold for C, C/—=C " and
C' # @, then (A), (C) and (D) also hold for C'. Hence C' e code (c). Let C e code (c)

for some integer ¢ and C :LUT% C', C' # @, for some 8€{~1,0, 1}. Since C' #J

we have |C[0]|<2. For all j>1, C'[j]=C[j]. Because also C'[0]+2C'[1]=

C[0]+2C[1]+6 we have ¥;., C'[i]2"=c+8. It is easy to check from the definition
INPUT(8) , ,
of INPUT (8) that if (A), (C) and (D) hold for C, C=——=> C', and C' # I, then

(A), (C) and (D) also hold for C'. Hence C'ecode (c+8). D _

ProposiTION 3. Let T:N->N be any function such that T(i)=3' forall iz 0. Let
the parameter selection function I:N-2", associated with the mapping COUNT, be
such that for all indices i =0 and steps t = 1 thereexistsat', t =t <t+T(i) and i€ I(t').
Then for each input sequence 8,85, ,8,"+,8,€{—1,0,1}, t=1, there exists a
sequence of one-way infinite arrays C°,C',- -+, C",- -+ -, with C° the all blank initial
array and C'"' is mapped to C' by COUNT(t,8,) for all t=1, such that C'e
code (Y!_, 8,) forall t=0.

Proof. Roughly speaking the proposition states that if, starting from the all blank
initial array C° UPDATE (i) is executed at least once in every interval of 3' steps,
for all iz 0, and INPUT (8) is executed each step, with §e{—1,0, 1} the currently
polled input, then the array at time ¢ represents the stored integer at time ¢ according
to the code function. By Lemma 1 and the definition of COUNT this is the case if,
under the timing assumption on the parameter selection function I, each time
UPDATE (i) and INPUT (8) map an array satisfying (A), (C) and (D), the result is
not the undefined array &. The only way UPDATE (i) can map an array C[0:],
satisfying (A), (C) and (D) to @ is for C[2i:2i+2]e€{212,212,-2-1-2,-2~1-2}.
Similarly, the only way INPUT (8) can map an array C[0:] satisfying (A), (C) and
(D) to @is for C[0]€{2,2,-2,~2}. Hence we have to prove that, under the assump-
tions on I, and starting from the all blank initial array C°, these undesirable subarrays
do not occur at the crucial moments. Induction is on the number of steps ¢

Base case: the first step. Since C° is all-blank, for all i =0 we have CN2i:2i+3]=
0000. Hence C* === 1 with C'[0]=35, and C'[i]=0 for all i=1. That is,
C'ecode (8,).

Induction: t= 1. Assume, by way of contradiction, that for the input sequence
81,85, ++,8,(8,€{~1,0,1}, 1=j=1) we have for all hlsj=:

INPUT(8)

o1 SOUNTGS)
C C,C’'#@ (induction assumption),
and

COUNT(1+1,8)

C & (contradictory assumption),

for some 86{—1,’0, 1}. Forall j, 1=j=t, by Lemma 1, C’ e code (T1_, 8). Let I(z+
D={luiry,--.h} and ii>i > > i, Decomposing COUNT (+1, 8) into its

OPTIMAL SIMULATION OF COUNTER MACHINES 11

constituent mappings we have

UPDATE (i) UPDATE(j;_,) UPDATE(i,) INPUT(5)
r_ , 1 . 11 1 , =
C'=CpyE Yo Cry-v ot = ! > Co=,

for some intermediate, possibly undefined, arrays C, C,_,, * - -, C,. By the contradic-
tory assumption there must be a first undefined array in this sequence, say C,_; =<
and C;#J for some j, 0<j=1[+1. Note that, by Lemma 1, C; € code (Z:=1 5).

Case 1. j>1. Setting i to i;_;, to avoid subscripts,

Cj UPDATE (i)
Since Cjecode (¥;_, &) and therefore satisfies (A), (C) and (D), this can happen only
if G[2i:2i+2]e{-2-1-2,-2-1-2,212,212}. Assume C;[2i:2i+2]=212, the other
cases being symmetrical. Since the initial array C° contained only blanks, there must
bea t', 0<t =t with t—¢ minimal, such that
COUNT(1",5,))

Cl'—l Ct”

C*[2i+2]=2and C""'[2i+2]#2. (A previous mapping UPDATE (k), with k> i, in
the (¢+ 1)th step could not have set C[2i +2] to 2 from another value, so if Cj[2i +2]=2
then Cy[2i+2]=2 for all k,I+1= k=] Since C,,=C" indeed ' =t) From the
definitions it follows that C[2i+2] can be set to 2, from another value, only by the
mapping UPDATE (i). So i€ I(t'), and we denote by C’ the array mapped upon by
the occurrence of UPDATE(i) in COUNT(?,8,)=UPDATE (i});

we must have C'[2i:2i+2]=002. Since during the mappings, following UPDATE (i)
in COUNT (¢', ,), subarray Cy[2i+2:oo],is not accessed, and we have by Lemma 1
that C'ecode (;_, &) and C"ecode (¥._, &,), it therefore follows that

(1)
2i+1

kz C'Tk]2* =2iz+l C'[k]zk+a,,=2iz_1 C'Tk]2*+8,=(4""'~1)/3 (by(C) and (D)).
=0 k=0 k=0

Any first occurrence of an UPDATE (i+1) in a COUNT (¢, 8,), t'<t"<t+1, s0 in
between the mappings by the two occurrences of UPDATE (i) in steps ¢’ and t+1,
would have set C[2i+2] to 0, resulting in |C“[2i+2]|= 1, contradicting the minimality
of t—t'. Therefore, for all ¢", ' <t"<t+1, i+1gI(t"). By the assumption on I in the
proposition it follows that

(2) t—t' <3,

We are now ready to derive a contradiction. For the only mappings which can alter
something in C[2i+2:2i+3] are UPDATE (i) and UPDATE (i+1). However, in
between the mappings according to the occurrence of UPDATE (i) in step ¢’ and that
of UPDATE (i) in step ¢+ 1, no occurrence of UPDATE (i) has changed C[2i+2:2i +
3] (since this would contradict the minimality of t—t'), and UPDATE (i+1) has not
occurred at all (since Cj{2i+2]# 0 by assumption, i+1 is not in I(z-+1) too). So, by
the definitions of COUNT and UPDATE we obtain:

(3) f C'k]2* = § Clk]2".

k=2i+2 k=2i+2

12 PAUL M. B. VITANYI

Furthermore, by Lemma 1,

el t o
4 L CkR*= Y &=13 Gk~
k=0 k=1 k=0
Thus:
2i+1 0 =)
Y ClkR'= Y Gk~ T ClkI*
k=0 k=0 k=2i+2
t s]
=3 &- X ClkR* (by (4))
k=1 k=2i+2
! = <]
=3 &— Y Crk]2* (by (3))
k=1 k=2i+2
(5) , .
t t 2i+1 s
=73 &~ 3 &+ Y C'Tk]2* (by Lemma 1)
k=1 k=1 k=0
st-t'+(4'"-1)/3 (by (1))
<3"* 4 (411 —1)/3. (by (2)).
But, by way of contradiction, it was assumed that C[2i:2i+1]=21. Therefore,
2i+1) 2i-1 .))
(6) Y Clk]2¥ =41+ ¥ ClkRkz4'—(4'-4)/3-4/2,
k=0 k=0

for iz2 (and 214 for i=1, =4 for i=0), by (C) and (D). Since for all i=0 the
contradictory assumption leads to the contradictory inequalities (5) and (6) we conclude
that j =1 and case 2 holds.

Case 2. j=1 and

(8)
Cl INPUT (8
However, under the assumptions in the Proposition, 0 € I(¢) forall = 1,s0 COUNT (¢ +
1,8)=---; UPDATE (0); INPUT (8). But if C[0:0]# is the value of
UPDATE (0) then C,[0]g{~2, -2, 2, 2}. Therefore, the contradictory assumption also
fails in this case and

INPUT(8)

C——=Cy# .

Since the contradictory assumption has now been proven false, by Lemma 1
Ci+1, G-+, Cyecode (T;_, 8;) and Coecode (¥, 8;+8). Setting C*' =C, com-
pletes the induction. 0O

Proposition 3 shows us a way of real-time simulating the quintessential counter
S figuring in Proposition 1. Let C° be the all-blank initial array, and let the parameter
selection function I meet the timing conditions in Proposition 3. If we map in the tth
step, for each t= 1, the current array value to the next one by COUNT (¢, §), where
“add 8°°, 6e€{—1,0, 1}, is the input command polled from the input terminal in the
tth step, then the array at each time ¢ 2 0 is a representation from code (stored integer
at time ¢). Since the mapping COUNT (t, 8) = - - ; INPUT (8), and INPUT (&) maps
C[0:1] to a next value, we can simultaneously output “count equals zero” if the next
value of C[0]=0, or “count unequal zero”" if the next value of C[0]# 0, according to
Proposition 2.

OPTIMAL SIMULATION OF COUNTER MACHINES 13

Note that the requirement of an initial zero count is not essential. We can as well
prove Proposition 3 starting from C° equals a representation of an arbitrary integer
c. For instance, a representation from code (c), containing only equal signed digits of
absolute value less than 2, for C°, lets Proposition 3 go through as well. Thus, the
arrangement can real-time simulate initially nonzero counters.

2.3. An oblivious one-head tape unit. Proposition 3 puts a heavy burden on a
one-head tape unit: C[0:3] must always be under scan, C[2: 5] within each third step,
and in general C[2i:2i+3] at least once within each interval of 3’ steps, for all iz 0
simultaneously. This requires that, basically, at all times all C[i] must be on the move,
drifting inward or outward from the location occupied by the single head, so to speak.
This data motion must be due to the swapping of array elements amongst the momen-
tarily simultaneously scanned tape squares. To be able to scan C[2i:2i+ 3] within
certain time intervals, for all i = 0, it is necessary that at certain times arbitrarily many
of such quadruples are split and the pieces geometrically far apart. The piece C[2i:2i+
1] must be joined to piece C[2i—2:2i—1] at certain times and to C[2i+2:2i+3] at
other times, for all i=1. Apart from performing the splitting, moving and glueing,
the head must also recognize quadruples C[2i:2i+ 3] to perform UPDATE, and also
know the relative order amongst pairs of such foursomes. Hence we need to maintain
some order and identification of the array elements. Yet we cannot identify the
individual elements of C with respect to their position, since such an identification tag
for C[i] needs log i space and log i time to evaluate. All this points in the direction
of a recursive process, but again we cannot maintain depth of recursion parameters.

The process exhibited below rests on the following intuition. The goal is roughly
to access quadruples of consecutive elements of C, of index @(i), at least once in each
interval of 2°” steps, for all iZ0. We call the individual array elements cells and
consider them as packets of information to be swapped amongst simultaneously scanned
squares. Assume we are able to move a block of cells, called A,, by, according to
some regime, moving the head, centered on the cells constituting A,, from the left
end of A,, where it scans some squares left adjacent to A, to the right end of A,
where it scans some squares right adjacent to A;, and back again to the left end of
A,. Let A, be contained in a block of cells called A,. Then A; moves by transporting
cells of A,—~A; through A; to the other side of A,, while simultaneously shifting the
cells of A;. Thus, we will shift the total block A, from the left end of A, to the right
end, and back again to the left end. During such a full sweep of A, over A,, we will
shift block A, within a larger block A; by a single square. So the relation between
A, and Aj; is analogous to that between A, and A,. See Fig. 1.

A

FIG. 1. The blocks are individually ‘““moving” in the indicated directions.

In general, we envision an infinite series of nested blocks,
A, Az, Ay Aisy, o0, With A; properly embedded in Ay, i=1, such that a full
sweep of block A; over block A, shifts block A;.; one square in the currently desired
direction. In the above arrangement, the head is always centered on block A;, and
therefore, since it is allowed to scan but a fixed number of squares, when it is centered

14 PAUL M. B. VITANYI

at the end of block A, it scans but a fixed amount of squares outside. Smc; ;:1:) iré;ilz
of the individual blocks govern the action the single head' ought .to take, ant e
of A;+1—A; have to be transported through A; for arpltrary i, wehcallllnod e e
physically present ends of all of blocks A;, Az, -+, A;in between btl ekeetlo centere
on A, and a cell, to be transported, in A;4;— A, So we want the ol;: 1s me , A
a sense, completely out of each other. That is, an arrangement as oelow I 2.2,

where we denote the cells in A, —A; as B, for all i=1, and A, by By. (x=y
denotes that y occurs after x.)

S o o S e e
N '“E[B;'“Q'“@Q

—r—

= EJED o EOE k] -
el 2 o [[v v e

F1G. 2
—_—— . =
AL Jlew | B A |2 |
—~
é> ’ [ﬂ [Bis JBiM I
=
t*j |[51+1 Aj | Bisi I to
=
Ny s e
=~
[[Bm lLAi]
—_—
é:> o @1lAi jbi+1|
—=
= - A 1[om | -

FIG. 3. The action of block A, = A;U B,,, with respect to blocks B, j>i+1 is not depicted.

In this manner we telescope the blocks, as it were, inwards and then outwards in
the other direction, subsequently reversing the process. To achieve this behavior, we
transport, for all i= 1, elements of block B;., through Ai=U}=1 B; while simul-
taneously shifting the cells of A; to accommodate the transport. The motion of the
head through A, is governed by recursively moving B;., through A, for all j, j=i.
Schematically, level i of the process is depicted in Fig. 3. When the head was at the
ends of block A;.; =A;U B,,,, it now could have picked up or deposited a cell outside,
that is, of a block B;, j>i+1. Assume that all blocks B, i = 1, have the same number
of cells, say x. By a full sweep of the head over block A; we shall mean the action the
head has to perform, starting from one end of A, to pick up a cell of B, j> i, deposit

OPTIMAL SIMULATION OF COUNTER MACHINES 15

it on the other side of A;, and finish at the same end of A; from which it started. So
basically a full sweep of the head is a traversal of block A; from one end to the other
end and back again. Let a full sweep of the head over A; take at most S(i) steps, i=1.
Then to transport all of B;,; from one end of A; to the other end, and back again,
takes at most ¢xS(i) steps for some constant c¢. Since this constitutes a full sweep of
the head over block A;.,, we have S(i+1)=cxS(i), for all i=1, and obviously
S(1)=cx. So S(i)e2°?,

In the formal construction below we set the block size to 2, and represent the
loosely described block B; by “[;1,”’, in the understanding that the two cells concerned
are tagged with “[” and “]”. The subscripts on the tags are just there to aid the reader,
but do not occur in the actual simulation. An element of block B; in transport through
block A; j>i, is identified by a curly bracket of the appropriate type. Thus each
individual cell has permanently assigned to it a tag, consisting of either an opening or
closing bracket, which may at different times be square or curly. Fig. 4 sketches a
descriptive situation:

A4 I

F1G. 4

After these preliminaries we formally define a one-head tape unit M. It is con-
venient to view the instantaneous descriptions (i.d.’s) (momentary snapshots of M’s
tape contents and the head position) as one-way infinite linear arrays T, with “<” or
“>” denoting the center of the head position. We tag the cells, containing elements
of the array C of the previous section, with “[”, “]”, “{”” or “}”. Below we display
only these tags, since for the moment we are not interested in the cell contents. The
identity of the underlying squares is not important, but the identity of the tagged cells
is fixed, wherever they end up. For convenience of the reader we index the tagged
cells (or rather the tags). The eventually defined machine, however, has no indexes
associated with the cells, only one out of the four mentioned tags. The initial i.d. is,
now focussing on the tags only,

T°=>LLikL - Llilisa s -

We describe transformations of the array T in the form of six parametrized recursive
functions, and four nonparametrized functions, each of two types. Each such function
X will, for a unique subarray of T, rewrite this subarray by reordering its elements,
specified by X(-): a O B—a’ O’ B’ with a,a’, B, B’ being strings of (for clarity
indexed) tags and ¢, O'e{>,<}. A definite requirement for the process is that, at
some time, it has to scan “‘[;42 }is2 [i+3)iv3” for the first time. So we define, for all i = 0:

A, i) >LLh ke Llilia)i = Lo Lliliea e - L > i
For symmetry we also define:
A<D Ll Ll)i Lh<—= La <kl Ll

To abbreviate notation we shall henceforth denote shortly, for all i=0,
def
Sl =<ChLLkk - L1,

1O S Lot - - O,

16 PAUL M. B. VITANYI

with
Ce{<,>}and[;};=¢efori=0.
So for all i=0:
ACL) > La e = Lol > L,

A D) Ll Ll <= L <l 1 Lo

By execution of A(>, i) on the appropriate unique substring of T° we have therefore,
using the same rewriting denotation as in the previous section:

Toéi_Q) T
with
T°=>LLL: - Ll dis Lz div2livs iva - - -
and

Th= [i+1[i]i[i‘1]i-—l e [1]1 >]i+l [i+2]i+2[i+3]i+3 e

where ¢; is the number of steps it takes to execute the mapping A(>, i), to be specified
later, i = 0.

With the head scanning at least five squares right of the center position, indicated
by “>"’, the subarray “[;+2)i+2[i+3]i+3” is scanned at time ¢, for all i =0, while at time
t=0 the subarray “[,],[;],” is scanned.

DeriniTION. To achieve the required interchange of tagged cells, define the
functions below. Recall that “};”” denotes the same cell as *‘];”’, only the attached tags
have changed. Similarly for “{;”” and “[;”’. For all i=0 and j>i+1:

AL) > lax = [L>x (x#[)
A D) 2l <= x<[r 1 L (x#])
B(>,i): Lin i 1i>1x =} <1)ix (x#[)
B(<, i) x[;<lili[ier = x> (x#])

C(>,0): Lt =1+ = B <Gl i
C(<, D) L <Lt Yr Livr = L L1 >} A

D(>,i): >l 1x = [111>x (x#])
D(<,d): xl i< = x<L; s (x#1)
E>, D i Ir>linx = Lo din k1 > (x#])
E(<, 1) xLivr <l D Jivr = x<Urdr Lisa Jins (x#])

F(>,i): [L >Tisa Lz = Lz lisa L L >x (x#D)
F(<, i) bzl <l 1 lier = <UL GaaJisnJivz (%))
G(>): >{;Lilis1 = >Lilin{;

G(<): i< P Bl i<

H(>): > dililin = 2Ll s

H(<): L LYi{m< = b lin i<

J(>): >{is1dilinn = <Lilis1lina

J(<): i LYin< = L Jinn >

OPTIMAL SIMULATION OF COUNTER MACHINES 17

K(>): >holicililicn = <lilisi v Lisa2
K(<): [ix1 LYot {iva< = L2 i1 L >

The parametrized functions A through F set the basic pattern to transport tagged cells
from one side of [;]; to the other side. (The index j is always greater than i+1.) The
nonparametrized functions G and H serve to move (linked pairs of) curly brackets
through “][” interfaces. If curly brackets are adjacent to a (linked) pair like “][” then
they have not yet reached their destination. If curly brackets are adjacent to a pair of
square brackets of equal type, then they have reached their destination, and are fitted
in place and changed back to square brackets, by the functions J and K. In the G and
H functions, the index j is again greater than i+ 1. However, to make the point once
more, the indexes are only put there to aid the reader. The intention of the described
rewritings is that the arrays concerned consist of nonsubscripted brackets, each bracket
viewed as tagging a particular cell. The rewriting reorders these tagged cells in the
array, and possibly changes brackets from square ones to curly ones of the same type,
or vice versa, as indicated in the indexed version above. Note that A(>,i): Y— Y’
and A(<,i): Z—>Z' are related by the fact that Z is the mirror image of Y and Z’
is the mirror image of Y'. With mirror image we do not mean only the reverse, but
the reverse with every constituent symbol changed to its mirror image, so “>" to
“< o T L to 4“1, {7 to < and <Y to {7, Similarly for the other functions.
LemMA 2. For all i> 0, the functions are related as follows:

a) A>,D)=AC,i—-1);F(>,i—1)
Al)= A(<,i—1); F(<,i—1)

b) B(>,i)=B(>,i-1); G(<); F(<,i—1)
B(<,iy=B(<,i—-1); G(>); F(>,i—1)

c) C(>,i)=C(>,i—1); H<); F(<,i—-1)
C(<,i)=C(<,i=1); H(>); F(>,i—1)

d) D(>,i)=A(>,i—1);E(>,i—1)
D(<,i)=A(<,i—1); E(<,i—1)

e) E(>,i)=B(>,i—-1);J(<); D(>,i—1); E(>,i—1)
E(<,i)=B(<,i—1);J(>); D(<,i—1); E(<,i—1)

f) F(>,i)=C(>,i—1); K(<); D(>,i—1); E(>,i—-1)
F(<,)=C(<,i-1); K(>); D(<,i—1); E(<,i-1)

that is, six parametrized functions recursively calling each other. (Since D(>,0) and
D(<, (i) are “no operation™’ s which do not change anything we leave them out, cf. below.)
Proof. For a) through f) we prove one equality each; the other one is symmetric.
For all i>0, with [;_,];,-;=¢ for i =1 by definition:
a) For x#[:

>Llhilax=>L-haLliliax

A(>,i~1)
Ll-1)->)ilisax

F(>,i-1)
L - x=lin 1 > x;

18 PAUL M. B. VITANYI

b) For x#]:
xL<li L =xLi<b- D=1 L1l

At xLil-11->{)il

G(>)
> x[i [1-1 Li-1>1: Lina {;

F(>,i-1)
> x[i1 [i li=1 1i=1>{;

=xL >4
c)
La <UL Lo =Y [<Ub-1 =1 L1l
—= L=l i ilia
H(>)
= ili-1)i-:> il b {;
F(>,i-1)
L L)l di-i> b 4
=L L 1i>hals
d) For x#[:
>Llx=>0-11i-1 0]
A(>,i-1)
lili-1)i->1x
E(>,i-1)
[Lil-li-i>x
=[1;>x;
e) Forx#]
i<l il =xla<l-1di-1 L lilia
s il 1> i i
"'—'i(—i)_—> x[ili-1di-1<Yi Bis1 Jisa
D(<,i-1)
xL<bi-ili-1liliei i
E(<,i~1)
1<[r-1 11 L)il Lia
=x<[; 1 Lt Jivns
f) For x#1
oo limi<U L b =xli2liei<li=i D=1 L1 Lo
Cl<,i=1)

xLi L1]!—1>}i+2{i+1 Lilin

OPTIMAL SIMULATION OF COUNTER MACHINES 19

K(>)
= x[i -1 li-1<liliv1 a1 Jivn

D(<,i—1)
i<l b lilisibia Lis

E(<,i-1)
<[lici Ll Lisn L

=x<[; li Lis1 Jiv1 Jiva- o

The mappings D(>,0): >x—»>x(x#[) and D(<,0): x<—x<(x#]) are “no
operation” or ‘“‘skip” instructions. Deleting them henceforth in the expansion rules of
Lemma 2¢) and 2f), for i =1, those become:

ad Lemma 2a) E(>,1)=B(>,0);J(<); E(>,0)
E(<,1)=B(<,0); J(>); E(<,0)

ad Lemma 2f) F(>,1)=C(>,0); K(<); E(>,0)
F(<,1)=C(<,0); K(>); E(<,0).

A level i expansion of a function X (>, j) or X(<, j), jZ iz 0, results from expanding
that parametrized function with parameter j into a sequence of parameter i functions
and nonparametrized functions, according to Lemma 2 (with the “no operation™’s

B(>,i), B(<,i), -, F(<,i),G(>),G(<), -+, K()}—{D(>,0),D(<,0)}, 1= =
n. We extend the concept in the obvious way to sequences of functions X;(<y, ji1);
XZ(OZa]2)7 ety Xm(om’ jM)7 jhjZa e ’jm-Z-i and <>1a<>2: o a<>m €{<a >} For
example, the level O expansion of A(>, 3) is found by way of the level 2 and level 1
expansions:

A(>,3)=A(>,2); F(>,2)
=A(>,1); F(>,1); C(>,1); K(<); D(>,1); E(>,1)
=A(>,0); F(>,0); C(>,0); K(<); E(>,0); C(>,0); H(<);
F(<,0); K(<); A(>,0); E(>,0); B(>,0); J(<); E(>,0).

The atomic mappings of the level 0 expansions of the parametrized functions are called
the local rewriting rules, and govern the switching of the tagged cells, in the squares
scanned, by the basic steps of the oblivious one-head tape unit M. Note that a fat head
covering four squares left and four squares right of the displayed center “>" or “<”
suffices to execute these atomic mappings. Below we use superscripts to distinguish
the identity of the various tagged cells before and after rewriting.

Local rewriting rules:
G(>): >{'IPl - >PP{
G(<): 1 PP< = PI'P<
H): >} PP - >PrY ¢
H(<): 1'PP< - P e<
J>): >{'PP ~ <P['P
J(<):'PP< = ['PP>

20 PAUL M. B. VITANYI

K(>): >} {PY - <PrTIY

K<: ['PYi<~TI'PP>

A(>,0):>[~[>

A(<,0):]< = <]

B(>,0): I'>FPx = ¥<1'x (x#[)

B(<,0): x['<? = x[*>{’ (x#])

C(>,0: 1>~ Y{<r

C(<,0: 1'P<P - P>Y {2

E(>,0): ['>Px— ['P>x (x#D)

E(<,0): x['<P - x<['P (x#])

FC>,0:[">1PP~-PI' P>

F(<,0:1'P<P e~ <PrY
The only use of the context symbols x in the definitions of A(>, i), A(<, i), F(>, i)
and F(<,i) was to force a unique expansion into functions with parameter j, j </,
according to Lemma 2. Since A(<,0), A(>,0), F(<,0) and F(>,0) are atomic
indivisible actions, because the local rewriting rules shall not be decomposed any
further, we do not need these context symbols at the lowest level.

In the sequel it is useful to talk about well formed arrays, that is, the set of arrays

from which the consecutive i.d.’s of M are taken.

(i) T°is a well formed array.
(i) If T is a well formed array and X(.) is any local rewriting rule, with the dot

standing for any appropriate argument, such that Té% T', T'#), then
T' is a well formed array.
(iii) No array is well formed except by (i) and (ii).
Since no mapping either deletes or multiplies a headmarker, i.e., “<” or “>", all well
formed arrays contain a single headmarker. By the mutual exclusion of the subarrays
they rewrite, if a well formed array T is rewritten to T' # J by a local rewriting rule,
then T is rewritten to & by all other local rewriting rules. We now show that a well
formed array T is always rewritten by some local rewriting rule to a another well
formed array, which rewriting rule and array are therefore unique.
Earlier, we observed that, for all i=0,

A(>,i)

TO—=T"
If Y YO, Y-+ Y@=A(>, i) is the level O expansion of A(>, i) then, by
Lemma 2, there exist well formed arrays T, T, TS, -+, T, T =T° and
T = T% such that
Y
T =T

for all j, 1 =j = n. By the uniqueness of application of local rewriting rules it follows that

X
7O 5 o

OPTIMAL SIMULATION OF COUNTER MACHINES 21

forall j, 1=j=n, X # Y” and X is a local rewriting rule. Hence each well formed
array in the sequence T(”, T, - -, T\, has exactly one local rewriting rule which
is applicable to it, and the application of this local rewriting rule yields exactly one
next well formed array.

By Lemma 2a) we have A(>,i)=A(>,i—1); F(>,i—1) for all i > 0, which leads

to
A(>,i0)=A(>,0); F(>,0); F(>,1); - ; s F(>,i=1)
with
T AC0 T
and
T'x l:F(_—_$ T/+l

for all j, 0=j<i. Define A(>,) by
A(>, 00)—hmA(z) A(>,0); F(>,0); F(>,1);---; F(>,i); -

and the level 0 expansion of A(>,c0) as the infinite, or unbounded, sequence of local

rewriting rules resulting from the level 0 expansions of the constituent functions F(>, i),
i>0, above. So

A(> OO) — Y(O) Y(O) ,,,,, YEO). .
=A(>,0); F(>,0); C(>,0); K(<); E(>,0);" -

and there exists an infinite sequence of well formed arrays T,

T, -, T, -+, T =T° such that for all j=1
Y
T4, = T¢
1= J

and for no local rewriting rule X # Y{” and T = &

TS T,

i.e., Y{? is the only local rewriting rule applicable to T\%,. Consequently, a machine
which wants to execute the sequence of local rewritings of the level O expansion of
A(>, 00), starting with i.d. T°, needs only to select the single local rewriting rule Y(O)
applicable to the current T2, by considering the length 9 subarray of T¢; with the
current headmarker in the center, to obtain the next T$”, j= 1. From the expansions
in Lemma 2 we see that a nonparametrized function of G, H, J, K is always followed
by a parametrized function from A, B, C, E, F in the level O expansion of A(>,).
In a single step of M we shall first execute a local rewriting according to G, H, J, or
K, if possible, and then execute a local rewriting according to A, B, C, E or F, which
by the above is always possible, starting with initial i.d. T°. So the oblivious one-head
tape unit M at each step shall examine the squares around the headmarker, and
switches tagged cells and head position amongst the scanned squares according to the
only local rewriting rules applicable. Fig. 5 shows an initial segment of the sequence
of well formed arrays Ty, T, -, T\?, - - - produced by the successive execution
of the local rewriting rules in the level 0 expansion of A(>,) using the simple
procedure SWITCH below.

PAUL M. B. VITANYI

e oy s et ey ey ot (o o o e oy o oy oy et ot oy P P oy Py P £ o P P\ ey e e e P e e e e e e
o e o o o s s o et ot S At et ot At At At Ak A ek et Vot s At o ot St e At At At St A At At) A ot e S St e Aot hd et et Mt e et et ok ok et et et et et
e e e e e et ot et et et St St Sk b et St At At ot A Ak At et At Ak Nt A Ad At Aed At o) R A o At A S St o ot o St et et et et Mt et ot et et et s e

e e T o o o o o o o 2 1 2 vt o Pty et oy i e £ P Pt Py ey e T P o) e e e e e

e s v e ————— Y A VPSS URS SRS S S SRS E SIS E e
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] /0. D 0 D U S O O e dwat
1111111111 AVV e m S E E s e AV == AV AR = =SV Y e s e S s S m S S S ST S O oS R
TAVV == AVA - — AV AL N e AV oAV o —— = A
[ttt e fatataet et A Sl ifasbaoly S avteitentteiont A Suvterferianfunton famfunjentestast A W Mevia Ay 1y o b teioniany uy WS e
[[[[[[[[[[[[[[[[[VAL S o L o e e e o o o Nl e L L VY s e e
ook o o e o e P S e e S L L o o S e e e b e e e e (o e ug e coegopi-cegumil ANA Hupuwussfumstun

o »_»»» »»ﬁ»_a »ﬂpp» f & $_»»;ﬁégﬂaﬁ»%»:»_p_»p»_»_»_»:pﬁp
Hﬁﬁbﬁ)ﬁﬁﬁhﬁﬁ%ﬁ>mhﬁwonoHOMHm>mmMHMMHmHﬁHn>ﬁ>n>oﬁo)ﬁ)ﬁ)ﬂ)ﬁ)ﬁ
VAAVVVAANAVAAVVVVAVVARNAVAAVVVAAAVAAVVVVAVVVAAAVVVAVVVAAAAVA

T e e e

oy) P ey ey o ey) e ey P ey £ P o o o oy oy ()) o)) e 3 P pee (e ey e e e £)) e e e e) e e e e e e
ot o oo ot St A ot St At Ak b At Ao Ak ek Ak et At Sk bt St At At St St St ot et ot At At e e e e et e o b o ot et ot St b b bt ot et b b bd bt e e
o ey ey e o P Py e £ e et P P o e s P o e e oy o oy oy o ey o o o oy oy P) S)) £ g e e e T e e e
g M SN M HE S L SR SN L e e e e e R R K R e R R R R Ean R R R ana ons s o Ko Kol
et s et e e T e o e o e e P e £ P e P oy ey ey)) Py ot et et oy oy oy oty P P P e) T P e e e e e e e e e
e ot ot e ot ot et ot St et A At At s At At At et St At Ad Sk At A} At o St Sd At b b At St At St At At d Ad fd Y) Ad it o Bt At bt bt bk S et ed ot et et e

o i ot e S e F s et et s ety W\ L Aot ol entviomfanteniempanfamienpentanfenf s fanpen
it et fenfan e fantantantantanty o J Aestastariastastantanty Sk vily WAN A Dentent WAN Y1 Nantemtenh SN2 NV Y SV en i e fasfansanly W\ 4
CoC oo R LY oo R AVA S SV Y Ay S oA S oS m s A S S s S S S E T T T Y AR S LV AV S SRS
SoRVASETS VA== oo oo e YA S S s s s s S eSS o oo TS oo YA S

v L L o o o et s ey ey ey o oy o o o, o, e [o)) () P [o P e ey ey £ e £ P e N P A S T A O R AP S T P e
et ot o rd ok et o At Yt A bt o ok ot ot b ot A o Ak L A o et et S e b e o e o o A e e et At R S o e A et e e et et e e e e

AN artarfastarfurturtustestusbustunfuriusfonfusbanfusfusfusfusfusfurpusfasferusPusgus b usfufusfus opanfuspushusjusjusfujusfusfusfusjusfasfunfas e pusfas e
SOOLPRRRRPARAPARPRIR]L BEARRRNRPARRPRAPRARPRPRARIRAARIPADD
LMMMHmmwmwoﬁﬁHﬁoHmpﬁbﬁHoﬁoHoﬁHMHMMMHMMHmHﬁHMHMHoHmmmHMHmmm
CAAKVANRVYVAANVANVVVVAVVARAVAAYVVAAAVAAVVYVAVYVAARVVVAVYAAA
LU O LY Tl a0 L E U0 <L AR L~ < UaSUOLL OO E0 L dIua~add e
BT AT T T T T T T 0T T o g T T T T T T T TR

FIG. 5. The first 116 well formed arrays T, 0=j<116.

Step 1. Examine the length 9 subarray, centered on the headmarker, of the current

Procedure SWITCH:

i._d. anq switch tagged cells and headmarker position according to the
single, if any, local rewriting rule from the G, H,J, K rules which is

applicable. The result is a well formed array T.

OPTIMAL SIMULATION OF COUNTER MACHINES 23

Step 2. Examine the length 9 subarray, centered on the headmarker, of array T
from step 1, and switch tagged cells and headmarker position according
to the single local rewriting rule from the A, B, C, E, F rules which is
applicable. The resultant well formed array is the next i.d.

LEMMA 3. Starting from the initial i.d. T°, a one-head tape unit M, executing
SWITCH at each single step, executes exactly the local rewriting rule sequence of the
level O expansion of A(>,0). For each t> 0, in the first t steps M executes this sequence
up to and including the tth occurrence of a local rewriting rule of the A, B, C, E or F type.

The goal of introducing the present bracket manipulator was to scan the subarray
“L:1iLis1 e at least once in each interval of 2 steps, i = 0. We can express precisely
what the rth i.d. T' is. T° is the initial array at time ¢+=0, and T" results from an
execution of SWITCH on T, for all > 0. According to Lemma 3, ¢ equals the
number of occurrences of A, B, C, E, F-type local rewriting rules executed. We need
to recognize “[;1;[;+11:+1” as being the correct sequence of cells, which, since the cells
are tagged with nonindexed brackets in the manipulator proper, cannot go by way of
identifying the individual cells. For this purpose, the next lemma establishes a fopology
for the well formed arrays. Before proceeding, we review a few facts about well formed
arrays which are pertinent to the proof of that lemma. By definition, and the discussion
preceding Lemma 3, the set of well formed arrays equals the set {T{”|j= 0} defined
by the level 0 expansion of A(>, c0).

= Q). 0). . 0).
A(>?w)—Y(l)’Y(2)’.“’Y§)7"'

and forall iz1
Y
T == T with Tg” = T°.

By the definition of the initial array T°, and those of the various procedures, each
well formed array contains exactly one symbol from {<, >} and, for each i = 1, exactly
one symbol from {[;, {;} and exactly one symbol from {]; }:}. Recall that the indices
are not really there but serve to identify the individual cells for the reader by
distinguishing between the individual attached tags.

If a well formed array T contains a pair of adjacent brackets “[;],” then j=k;
if it contains “];[.” then k=j+1 in case the headmarker is to the left and j=k+1
in case the headmarker is to the right. More precisely:

LemMmA 4. Let T be a well formed array, and let O € {<,>}and a, B, v {[,1,{,}}*.
Then:

(1) T=a<>3[j]k')’=: k=j;
T=alk]BCy=k=];

(i) T=aCBlilxy=>k=j+1;
T=al[BOy=>k=j+1.

Proof. We basically prove the lemma by induction on the sequence of well forme:
arrays T§°) , as defined by the level 0 expansion of A(>,), j=0. To do so, we conside
the initial segments T¢”[0:2(i+1)], j=0 and i Z 0, in isolation and show by the clair
below that they internally satisfy the lemma. Viz., in executing the level 0 expansi
of A(>, i) to obtain T" from T° the elements of the sequence of subarrays T§ [0 2(
D], TE[0:2(i+ 1)1, - - -, T[0:2(i+1)], with TS = T® and T, = T*, will be shoy
to internally satisfy the lemma. Since during the execution of A(>, i) the final segmer.

24 PAUL M. B. VITANYI

Tr2(i+1):0] is not changed at all, and T 0 satisfies the lemma, the eler'nents of the
seEl\fence) of]subarrays 7’g§}°)[2(i+1) :00], TO[2(i+1):00],- -, T&,[2(i+1):0] do
internally satisfy the lemma. Because we have an oYerlaitp of(oc)me soymbol B?tv_ve;g
T[0:2(i+1)]and T;”[2(i+1): 0] for all j,0=j=a(i) with Ty = T and Ty =T%,
we can conclude that each well formed array T{”, 0=j=a(i), satisfies the lemma.
Taking the limit for i co, that is, considering A(>,), it follows that the lemma
holds for all well formed arrays.

CrLamM. Let, for all iéO?’ Xe{A,B,C D,E,F}, Ce{<, >} and T, T' be well

X(<,i) ,
formed arrays such that X (<, i): T[p:q]— T'[p:q), forsomep,q=0and T |===> T ,
and let YO Y -+; YQ be the level O expansion of X (©,i) with

I+1» 2

T‘,‘}L’,_lg&) TQ, for all j, 1=j=x(i) with T =T and TQ.iy=T'. Then, for all j,
I=j=1+x(i), T{"[p:q] internally satisfies the lemma. .

Proof of claim. Base case i=0. Since for i =0 the procedures are essentlally_but
the local rewriting rules, we only have to verify that in the definitions of the various

functions the subarrays left and right of the arrow internally satisfy the lemma. Note

that [;1; = ¢ for i=0.

Induction. Assume, by way of contradiction, that for some X (¢, 1), with X e
{A,B,C,D,E,F} and Oe{<,>} and i>0, the claim does not hold. But in the
execution of the level i—1 expansions of six of these functions with parameter i in
the proof of Lemma 2, the other six cases being symmetrical, the displayed subarrays
all satisfy the claim. Hence it must follow that a nondepicted subarray arising in the
execution of the level 0 expansion of some X'(<¢',i—1), X'€{A, B, C, D, E, F} and
O'e{<, >}, violates the claim. Regressing in this fashion all the way down to i=0,
we contradict the established base case, and the claim is proven. O

By the discussion preceding the claim we have established the lemma. 0O

LemmMma 5. Let T be a well formed array and let O e{<,>} and o, B{[, 1.{,}}*.
Then

(T=aO[kB or T=a[x];0B)=(k=j=1).

Proof. That k = jfollows already from Lemma 4. Considering the level 1 expansion
of A(>,)

and

Yy
I .
Ti = TV with T{" =T,

we observe that it follows from the definitions of the various procedures that, for all
well formed arrays Tj", jz0, the lemma holds. Expanding each A, B,C, D, E, F
function with parameter 1 to level 0, and examining the intermediate well formed
arrays T # T{", j, j' 2 0, yields the lemma. 0O

Lemma 4 and Lemma 5 show that a certain topological connectedness between
the indexed brackets is preserved throughout the array at all times, and that, in
particular, in each well formed array a ¢ Bl;ilc[:1my holds k=jand I=m=j+1. So
whenever there occurs a length four subarray “[][]” right of the headmarker the
tagged cells concerned are in the correct consecutive left to right order. Without further
proof we give a more exhaustive characterization of the topology. Let T be a well
formed array. Then, for each i=1, T satisfies precisely one of the following forms.

OPTIMAL SIMULATION OF COUNTER MACHINES 25
Fori=1:
a[, ;OB
aC 1B
a[,CLB
al>{;iLL - [-11-118 (some j=2)
ali>Yalihkl - [L1-08 (some j=2)
el -1 l-2l2 - LLhL L <hB (some j=2)
aljlji-1 -1 22 LLL{i<lhB (somejz2),

with the obvious modification for j=2.
For each i>1:

al; Li[i-1BOy
alBli-i Ly
alBOvYi-i il o [s2dje2 - o - [i2)i-21iy® (some j<i—1)
aO:B{i]j [+11i1 | [P0 [TPRIEY PEY Iy 7 (somej=i—1)
alioili-2dicalicadizs = [11 [Hici {iBO Y18 (somej<i—1)
alili-i licili2)iz - [i+1]j1 [j}iBO'y (somej=i—1),

with the obvious modification for i—3=j=i—1. Here ¢ can be either ““<” or “>”
and a, B, v, 8 €{[,1,{,}}*. Considering the fact that

T°=>LLLL Ll di -
and that, by definition, for i=0 and =1,

T = alPBlivilivaliva - [i+j]i+j [i+j+1]i+j+1 T,

J 23, the formats express, but for the choice of ¢ as “<” or “>7”, the format each
well formed array T' can have, by applying in sequence the requirements for i+
1,4+, 1. According to Lemma 4, whenever we scan a subarray “[][]” right of the
headmarker, we know for sure that this is the subarray “[;1; [i+1]i+:” for some i= 1.
In the next lemma we give an upper bound on the number of steps, that is, executions
of SWITCH, in between scanning “[;]; [;+1}i+1” right of the headmarker, for all i= 1.
To express the timing we consider expansions of A(>,) of level i, i=1:

and define for all j= 1
Y

T, = T¢ with T§ = T°.

The level 0 expansion of Y’ =X(<,i), with Xe{A, B,C, D,E,F} and ¢e
{<, >}, is fixed and, but for the headmarker arguments, is the same whether ¢ =<
or O=>. Thus, by Lemma 3, the number of steps of M to execute X (<, i) equals the
number of occurrences of A, B, C, E, F local rewriting rules in its level 0 expansion,
and does not depend on the orientation of the headmarker <, or the position j in the
level i expansion of A(>,c0) where Y!” occurs. We denote the number of steps, used
by M, to execute X (<, i), by Tx(i).

26 PAUL M. B. VITANYI

LEMMA 6. There exists a function S: N->N such that for each t=0 thereisa t' >t
such that for some a, a', B, B’ €{[,], {L.}}* and ©,0' e {<,>}
(i) T'=aOL B =T '=a'O'[[11,B" and t' —t=S(1).
(ii) T'"=aCLhLLB = T'=a'O[118’ and ' —1=5(2).
(iii) For all i>2 and xe{e {,}{} there is a x'e{e,{,}{} such that: T'=
aOx)iali1lici 1B = T =a'O'x' L2 i1 1ima [:1:8" and ' —t=S(i).
Moreover, S(i)=2Tx(i)+ Tr(i), for all i= 1, is such a function.
Proof. Consider the level i expansion of A(>,), i=1,

and
)

O ¢ . .
TV == T with T§’ = T°.

Then T¢” is of the form a O[;1,8 or a[;1;¢B, for all j=0. All such T{”s, with Y;"
not G, H J or K local rewriting rules, are i.d.’s of M. We restrict attention to the
particular subsequence T$), TS, -, T2, - - for which T} is of the form a<[,],ﬁ
for all k>0 and T{=T° For ‘each k=0 there exists a sequence Y
Yias o5 Y such that

syl e Y
(1) T | Vit Vju2 LENg O
Jk

By the use of the recursive expressions in Lemma 2 we can determine all such sequences.
Subsequently, we have to determine which such sequences take the most steps to
execute. So we first determine Tx (i) for all X €{A, B, C, D, E, F}. It follows from
Lemma 3 that Tx (i) equals the number of occurrences of A, B, C, E, F procedures in
its level 0 expansion. We see from Lemma 2 that:

Ta(i)=Ta(i—1)+Tp(i—1),
Tp(i)=Tg(i— 1)+ T¢(i—1),
Te(D)=Tc(i-1)+Te(i—-1),
Tp(i)=Ta(i—1)+Te(i—1),
Te())=Tg(i—- 1)+ Tp(i—-1)+Te(i—1),
Te(i)=Tc(i— 1)+ Tp(i—1)+ Te(i—-1),

nd Ta(0)=Tg(0)=Tc(0)=Tg(0)=T(0)=1 and Tp(0)=0. For this system of
surrence equations with initial values we find T, (i) = Tp(i) = Te-(i), for all i=0,
1 consequently Tg(i) = Tg(i), for all i=0, which in its turn yields Tp(i) = Ta(i),
~all i=1. Hence for all i 1:

Te(i)=Te(i) Z Ta(i) = Tp(i) = Tc (i) = Tp(i).

ow let Y, Y, -5 Y be a sequence of functions as in (1). Erasing the
7, H,J and K procedures (because they do not contribute to the number of steps it
takes to execute this sequence, by Lemma 3) and replacing all E’s by F’s and all B’s,
C’s and D’s by A’s (because they take the same number of steps for i = 1) the resulting
sequences are F(<, i), A(<,i); A(>,i) and A(<, i); F(>,i); A(<,i).Sofori=1,2,
S(i) =2Ta(i)+ Tx(i) satisfies the lemma. For i>2 we note that, for all k=0 (with

OPTIMAL SIMULATION OF COUNTER MACHINES 27

the obvious modification for k =0),

Tﬁ':i) =a<[;3)isli2lic2 i1 1 1B

t:-Zi:}a’[i—Z[I—3]I—3>x]i—2[i—l]i-—l[i 1.8
with Z; and x one of the following:
Zie{J(<); A(>,i-3),K(<); A(>,i—3)} and x=g¢;
Z;=B(<,i—3) and x={;
Z;e{C(<,i—-3),G(<); C(<,i—3),H(<); C(<,i—3)} and x=}{

In all cases, the execution time of Z; is T4 (i —3), which shows that S(i) =2 T4 (i) + Tr(i)
satisfies the lemma for all i>2 too. 0O
CoroLLARY. Let S:N—N be defined by S(i) =2T4(i)+ Te(i), foralliz= 1. Then:
(i) Foreacht=0 thereexistsat',t<t' =t+S(1), such that the t'th i.d. of M has
the form T" = a <[, 1,8 for some a, B € {[,),{,}}*.
(i) Foreacht=0 thereexistsat',t<t' =t+ S(2), such that the t'th i.d. of M has
the form Tl' = a<[l]l [2]23 fOT some o, B € {[9]7{5}}*-

(iii) Foreachi>2 and t=0 there existsat',t<t'=t+ S(i), such that the t'th i.d.
of M has the form T'=a>x);_2[i-1}i-1[: 1.8 for some a, Be{[,1{,}}* and
xef{s,{,}{}

It remains to determine S analytically.

LEMMA 7. S(i) = (1+v2)™ ' +(1=-v2)™,

Proof. From the system of recurrence equations, and the values for i =0, in the

proof of Lemma 6, follows:

The solution for this homogeneous equation is of the form T, (i) = axi+ bx}, where
X, are the roots of x>—2x—1=0 and a and b follow from T,(1) =2 and T4(2)=4.
So x;,=1 ++/2 and

a(1+¥2)+b(1-v2)=2, a(1+J2)>+b(1-V2)*=4
yielding a =1/\/5 and b=—-1/fi. Hence

1 o1 -
Ta(i)=—=(1+Y2) ——=(1-2)}, iz=1.
2 J2
From the system of recurrence equations, and the identities amongst the functions, it
appears that Tx(i)= TA(i)jI- T4(i—1) whence the expression for S(i) follows. 0O
JQOROLLARY. S(i)<3™! foralliz1. Viz., S(1)=6 and lim;,. S(i+1)/S(i)=
1+v2.
Of course we can obtain that S(i) <3'*' by a cruder argument. The present
analysis, however, is quite straightforward and precise. Running the bracket manipu-

lator on a computer, by way of empirical verification, confirmed the first nine values
of S.

2.4. The real-time simulator. Having set the stage in the preceding sections, we
now tie everything together to obtain the desired real-time simulator.

Let M be a one-head tape unit with a one-way infinite tape divided into two
tracks: the tag track and the count track. The finite control of M has a special register
containing the initial segment C[0:5] of the array C[0:0] representing the current

28 PAUL M. B. VITANYI

count as in §§ 2.1-2.2. The single head of M covers 14 squares and its position is the
intersquare boundary in the center. Initially, the head covers the leftmost squares, all
squares on the tape contain special blank symbols and the finite control is in a
distinguished initial state, in particular C[0: 5] contains 0’s only. Since M can always
initialize previously unscanned squares, still containing blanks, by keeping a parity bit
in the finite control, we assume that the tape is initially divided in the two tracks as
follows. Number the tape squares from left to right by —=7,~6, - -,0, 1,2, - - - . Square
i,iz0, contains initially on the count track Ci+6]=0 and on the tag track a tag
“[”, if i is even, and a tag “]”, if i is odd. So the initial situation can be visualized as
in Fig. 6, with the initial headmarker “>" kept in the finite control. At each step the
head rewrites the contents in the squares under scan, and shifts left, right or not at
all. Since the head shifts will be governed by the local rewriting rules of the last section,
the marker “>” or “<”, positioned on the center intersquare border of the scanned
squares, can shift at most two squares left or right in a single step. Whether this marker
is “>"" or ““<” can be maintained in the finite control; the initial marker is “>"".

FINITE CONTROL

INPUT 3 OuUTPUT 3

C°fo:s]

STORAGE_HEAD
\ __ -
[] [[] TAGS ZE
c°rs] | Cor7l C°niz) C°[2i1 | C°[2in]| count 7\1
X _ _—
F1G. 6

Each step of M consists of essentially two parts: first execute COUNT on the
representation of the currently stored integer, check whether this integer is zero, and
secondly execute SWITCH to switch cells containing digits of the integer representation.
The information in the two tracks of a square may be thought of as a cell containing
the current digit C[i], which is tagged by the tag on the tag track.

To execute COUNT, M inspects the scanned cells right of the headmarker, so as
to determine I(t) in the tth step, and also identify the squares containing C[2i],
C[2i+1], C[2i+2] and C[2i+3] for all i€I(t). To this purpose first procedure
COLLECT is executed. Let P be the current local tape contents, i.e.

_T1 T2 T3 T4 Ts Te T7
Y1 Y2 Y3 YaYs Ye V7
is the tape contents on the seven squares right of the headmarker.

Procedure COLLECT (P):
Let the seven squares right of the headmarker contain the string 7y7,-- - 7, on
the tag track and the string y;7y, - - * v; on the count track. Then we distinguish

P

OPTIMAL SIMULATION OF COUNTER MACHINES 29

essentially four cases, implicitly specified by ¢:
(@) T =[1 & m3m#[1= 1(1)={0,1,2} & C[6:7]=y,v2;
(b) mymoramy=[111= I(1)={0,1,2,3} & C[6:9]= y,¥2¥3Y4;
(€) mimmarars=]111[1=> 1(2)={0,1,i}, i>3, & C[2i:2i+3]=v,73Y47s;
11727374 TsTe ={ 1[1[1 = I(1) ={0, 1, i}, i>3, & C[2i:2i+3]
= Y3YaYsYes
117737475767, = H I = I(1) ={0,1, i}, i>3, & C[2i:2i+3)]

= YaYsYeY75
(d) none of (a)-(c)=1I(t)={0, 1}.

Modulo the correctness of the implications in the definition of COLLECT, which
remain to be proven, the execution of COLLECT (P) in the tth step of M both
determines I(t) ={i, iy, "+, i}, §>§-,> - ->i,, and identifies the locations where
C[2i], C[2i;+1], C[2i;+2] and C[2i;+ 3] currently reside, 1= j=1. Since these loca-
tions are either under scan on the tape, or in the finite control, viz. C[0: 5], the machine
can in the fth step execute COUNT (t, 8) = UPDATE (i;); UPDATE (i_));- -
UPDATE (i,); INPUT (8) by executing the consecutive mappings in the decomposition
on the relevant subarrays of C[0:00], without explicitly knowing the value of ¢. Thus,
in each single step, starting from the all-blank tape with the initial headmarker >’
positioned at the left end, the one-head tape unit M will do all of the following.

Procedure STEP:

Step 1. Initialize both tracks of right adjacent previously unscanned squares, still
containing primeval blanks, by writing the correct square bracket on the
tag track (check and update parity count in the finite control) and a blank
“0” in the count track of such a square.

Step 2. Execute COLLECT (P).

Step 3. Let the current value of I determined by step 2 be {ij, i;—y, -+, i;} with
iy >1i-;>--->1;. READ the current value of § from the input terminal
and execute COUNT (current step, 8), that is,

Step 4. WRITE ‘‘count equal zero” or ‘“count unequal zero” to the output
terminal, depending on whether or not C[0]=0, for the C[0] resulting
from step 3.

Step 5. Execute SWITCH. That is, switch the contents of the scanned squares,
considering the combined contents of the tag track and the count track
on a square as a single package. Interchange these packages amongst
squares, shift the head position and change the brackets and headmarker,
governed by the current headmarker, head position on the scanned
squares, and the scanned brackets alone.

PROPOSITION 4. The constructed one-head tape unit M is oblivious and real-time
simulates the quintessential counter.

Proof. The one-head tape unit M is oblivious since the head movement is governed
by the tag track and the headmarker, independent of the input. Attaching imaginary
indexes i =3, 4, - - to the initial tag track contents, a shift of 2 from the ones in the
initial i.d. in the previous section, the executions of SWITCH preserve that pairing of
C[2i] with opening bracket indexed i and of C[2i+ 1] with closing bracket indexed
i, iz 3. Since C[0:5] resides immobile in the finite control, Lemmas 2-5 ensure that
the identification of array elements by COLLECT (P) in each step remains correct

30 PAUL M. B. VITANYI

under the interchange of the mobile array elements of C on the count track by
SWITCH. In the tth step, for all =1, COLLECT (P) determines the value I(t) of
the parameter selection function I, as well as the high to low order of elements in I (2).
By Lemma 6 and Corollary, for each 7= 0 and each index i =2, there exists a step ',
t<t' =t+S(i—1), such that i € I(¢'). By the definition of COLLECT (P), {0, 1} < I(?)
for all £= 1. Since it follows from Lemma 7 that S(i — 1) <3' for all i =2, the oblivious
one-head tape unit M real-time simulates the quintessential counter by Propositions 2
and3. O

Let C be any k-counter machine, k= 1. Clearly, C can be thought of as a finite
control connected with k quintessential counters Sy, S, - * -, Si. At each step the finite
control of C reads an input command from the input terminal if it is in a polling state,
checks each S;, 1=i=k, for zero contents, and governed by this information issues
input commands “add §;”, §;€{~1,0, 1}, to each S, 1=i=k, and writes an output
string to the output terminal. In the spirit of Proposition 1, we can real-time simulate
C by an oblivious one-head tape unit M, which is just like M, but with k count tracks
(one for each quintessential counter) and one tag track. Storing the first six digits of
the representation of each count in the finite control, which is connected to the input
and output terminals through C’s original finite control, we finally obtain.

THEOREM. Each multicounter machine can be real-time simulated by an oblivious
one-head tape unit using logarithmic space.

Proof. By Propositions 1 and 4. That the space used is logarithmic in the simulated
number of steps follows since the head is centered immediately left of the square
containing tag “J;+,” for the first time after executing A(>, i), which takes T, (i) steps.
To clean up some final details: we can get rid of the fat head, covering 14 squares and
sometimes shifting its center two squares in a single step, by cutting out a piece of
tape of 14 squares and buffering it in the finite control. The remains of the tape are
glued together and the contents of the buffered piece are swapped from the buffer to
the scanned tape square and vice versa, according to the desired head motion, cf. the
speed-up technique in [3]. O

On the required bits. Although the preceding simulation and its proof may not
seem easy, the algorithm which does the work is pretty simple. As it happens, we are
also frugal in the number of bits. On information-theoretical grounds we require about
k log, 2n bits to represent any k-tuple of integers of absolute values up to n. In the
exhibited simulation, we can use four bits for each digit of a count, need not more
than log, n digits for each count, and since there are but four tags, each tag can be
encoded in two bits. Therefore, we use at most about (4k+2) log, n bits to represent
k counts of absolute values at most n. By restricting the most significant nonzero digit
to absolute value 1, and appropriately modifying the mappings UPDATE and INPUT,
everything goes through as before but code (¢) = {—2,-1,0,1,2,-1,0,1}*, ce Z. Thus
we only have to use (3k+2) log, n bits to represent k counts of absolute values at
most n. Using only digits from {—2,—1,0,1,2,0} also suffices, but complicates the
proof. How good a real-time algorithm is can be measured in the size of the storage
alphabet used. Realizing that actual machines use a constant size storage alphabet, we
observe that a large, although finite, storage alphabet in an algorithm implies a greater
constant delay. That is, the reverse of a speed-up by decreasing the alphabet size. At
the cost of a deterioration of the constant delay, implicit in the real-time solution
presented, we can do better than using (3k +2) log, n bits. Using in §§ 2.1 and 2.2 an
analogous redundant symmetric r-ary representation, based on the digits —r, —r+
1,---,-1,0,1,2,---,r—1,r, we can get the bit count down to about (1+
4/log, r) k log, n bits for maintaining k counts of absolute value at most n. The implicit

OPTIMAL SIMULATION OF COUNTER MACHINES 31

constant delay, however, rises proportional to log r. In the limit, for r > 00, we achieve
about the information-theoretical minimum in bits, but the constant delay goes to
infinity, that is, it takes infinite time to execute a single step.

Note, however, that for no fixed finite storage alphabet a real-time simulation of
but a single counter on an oblivious multitape Turing machine can reach the informa-
tion-theoretical bit minimum. Such a simulation must use Q(log n) size representations
for counts of size n, and we can argue that for each n there must be at least log n
representations. Hence we use at least log, 2n+log, log n bits per count.

On the size of the fat head. In the simulation a head covering 10 squares suffices,
which can be shown by a slight complication of the proof. Also, the head shift in a
single step of M need not exceed one square.

On the initially zero counts. As argued subsequent to the proof of Proposition 3,
the assumption of initially zero counts is not essential. The theorem holds also for
multicounter machines with each count initialized to an arbitrary integer.

3. Conclusion. For various theoretical and practical reasons, multitape Turing
machines, restricted in one or more resources, serve as a standard against which to
calibrate the power of other devices, or to compare the power among themselves under
different resource restrictions. The commonly considered resources are time, space,
number of tapes/storage heads and oblivious versus nonoblivious. The present simula-
tion is, perhaps, the first one which is optimal in all of these resources at once: the
use of no resource can be improved by relaxing the other resource restrictions. Apart
from the fact that the simulating device is real-time, oblivious and uses but a single
storage head, it is worthwhile to recall that there do not exist on-line Turing machines
using S(n) € o(log n) space, S(n) unbounded [4]. Thus, the simulation is performed
by the simplest (with respect to the considered resources) Turing machine which is
not an outright finite automaton. Another resource, which is sometimes considered,
is the number of head reversals. Again, it is easy to see that each multitape Turing
machine needs, in the worst case, a linear number of head reversals to on-line simulate
a counter machine, as does the presented simulation. (Although a multihead Turing
machine can simulate a multicounter machine without head reversals [8], the simulation
of such a device by a multitape Turing machine needs a linear number of head reversals.)

Some immediate applications. In a computation using k stacks we may want to
keep track of which pairs out of the k stacks are of equal height at any time. Without
slowing down the computation, we formerly needed k—1 stacks for doing so. Using
the present method we need but one extra oblivious one-head tape unit, or two extra
oblivious pushdown stores. A single pushdown store does not suffice. Similarly, we
can keep track of the headpositions in multihead Turing machine computations.

Number representations. The reader may appreciate the following comment of
John Locke on the intimate relation between counting and number representation.

For he that will count 20, or have any idea of that number, must know that 19 went before, with
the distinct name or sign of every one of them, as they stand marked in their order; for wherever
this fails, a gap is made, the chain breaks, and the progress in numbering can go no further. So
that to reckon right, it is required: (1) that the mind distinguish carefully two ideas, which are
different one from another only by the addition or subtraction of one unit; (2) that it retain in
memory [a systematic method for deriving] the names or marks of the several combinations, from
a unit to that number, and that not confusedly and at random, but in that exact order that the
numbers follow one another; in either of which, if it trips, the whole business of numbering will
be disturbed, and there will remain only the confused idea of multitude, but the ideas necessary
to distinct numeration will not be attained to.

32 PAUL M. B. VITANYI

The one and only basic reason to denote numbers at all is for the purpose of
comparing them, of whether the one is greater than the other, for without this capability
no arithmetic is possible and with it all arithmetic is possible. Thus we must be able
to distinctly represent all numbers, and if we have representations for all numbers up
to a given one, then we must be able to derive the next one, or previous one, from
the given one, while having a designated point of reference or benchmark number.
This is the task expressed in the notion of a counter machine, and multicounter machines
enable us to do arithmetic. The exhibited optimal implementation embodies a new
representation for multituples of integers suitable for exercising that basic activity
using minimal resources. Thus, for each n=(ny, ny, -+, 1) eZ* k=1, each such
representation for # consists of a linear string of symbols, and is about as compact as
possible. Such a representation has a distinguished access position p, and by considering
only the three symbols centered on the access position we can

(i) add any vector 8 =(8,, 8, -, &) €{—1,0,1}* to n to obtain such a rep-
resentation for n+8§;
(i1) for all i, 1 =i=k, determine whether n;+ 8; =0,
(iii) determine the new access position p' € {p—1, p, p+ 1}, which is also indepen-
dent of n and 8. In m successive additions the distance between the leftmost
and rightmost intermediate access pointer positions is O(log m), forall m > 1.

Note that Gray codes, as representations of integers, have vaguely similar proper-
ties for the case k =1. There, the representation of n+1, ne Z, can be obtained from
the representation of n by changing a single symbol. However, the symbol in the
representation which must be changed to obtain n + 1 from » can lie arbitrary far from
the symbol which must be changed to obtain n—1 from n. Moreover, these positions
depend on n and whether we add or subtract, and do not allow us to test n for 0. The
representation derivable from the simulation in [1] is closer to the one above, for the
case k=1, but the new access position p’ in (iii) depends on »n and 8. None of these
representations have any of the properties (i)—(iii) in case k> 1.

Augmented counter machines. Apart from the basic one-step multicounter
operations, several other one-step operations can be synthesized using concealed
auxiliary counters, such as tests for equality amongst counters (by maintaining all
differences on auxiliary counters). It is known [2] that the operations ‘‘set counter i
to zero” or ‘“‘set counter i to the value of counter j” (i# j) cannot be synthesized as
one-step operations on a multicounter machine. At the end of § 2.2 we noted that the
requirement of initially zero counters was not essential for the present simulation. It
can be proved [9] (this issue, pp. 34-40) that with a suitable embellishment the
present simulation can also support the one-step operation ‘“‘set counter i to the value
of counter j” (i# j). Define an augmented counter machine (ACM) just like a multi-
counter machine but with the one-step input operations ‘“set counter i to the value of
counter j” (for any pair of counters i, j) added and any initial counter contents in Z

allowed. Such a machine can execute quite powerful instructions in one step. For
example:

L:if (x<y & y=c) then (x< z; z« d) else (x« y; goto L') fi
with x, y, z integer variables, ¢, d integers and L, L’ labels, is a one-step instruction

for an ACM.

THEOREM. Each augmented counter machine can be real-time simulated by an
oblivious one-head tape unit in logarithmic space.

Uniform space complexity. Viewed in space-time, the bracket manipulator head
describes an interesting curve. This is perhaps best expressed by stating that the

OPTIMAL SIMULATION OF COUNTER MACHINES 33

two-dimensional space-time trajectory described by the center of the greatest tape
segment, delimited by brackets with indices j, /=1, is the same as that described by
the center of the greatest tape segment, delimited by brackets with indices j,j'=i—1,
i>1, subsequent to multiplying the time scale of the latter by S(i)/S(i—1) and the
space scale of the latter by i/(i—1). This shows that the number of distinct squares
visited in each time interval of n steps, for all n=1, is @(log n). Generalizing this
observation, we say that a multitape Turing machine M uses uniform logarithmic space
if, for any unbounded input sequence, the total number of distinct squares, visited on
M’s storage tapes, for each interval of n steps, for all n=1, is O(logn). It can be
shown [10] that each multitape Turing machine using uniform logarithmic space can
be real-time simulated by an oblivious one-head tape unit using uniform logarithmic
space.

Oblivious simulations. It seems to us that also the converse of the maxim leading
to Proposition 1 holds generally. Viz., if we can simulate arbitrarily many storage
devices by a fixed number of, possibly different, devices then we can do so obliviously
retaining the same resource bounds. The point here is that if the multitude of head
movements of an arbitrary number of heads can be accommodated by the motion of
a fixed number of heads, then there is no reason to suppose that any trajectory of the
latter can make significant use of particular input streams.

REFERENCES

[1] M. J. FISCHER AND A. L. ROSENBERG, Real-time solutions of the origin-crossing problem, Math.
Systems Theory, 2 (1968), pp. 257-263.

[2] P. C. FISCHER, A. R. MEYER AND A. L. ROSENBERG, Counter machines and counter languages,
Math. Systems Theory, 2 (1968), pp. 265-283.

[3] J. HARTMANIS AND R. E. STEARNS, On the computational complexity of algorithms, Trans. Amer.
Math. Soc., 117 (1965), pp. 285-306.

[4] J. E. HOPCROFT AND J. D. ULLMAN, Some results on tape-bounded Turing machines, J. ACM, 16
(1969), pp. 168-177.

[5] M. MINSKY, Recursive unsolvability of Post’s problem of ‘tag’ and other topics in the theory of Turing
machines, Ann. Math., 74 (1961), pp. 437-455.

[6] N. PIPPENGER AND M. J. FISCHER, Relations among complexity measures, J. ACM, 26 (1979), pp.
361-381.

[7] C. P. SCHNORR, The network complexity and Turing machine complexity of finite functions, Acta
Informatica, 7 (1976), pp. 95-107.

[8] P. M. B. VITANYI, On efficient simulations of multicounter machines, Inform. and Control, 55 (1982),
pp. 20~39.

, An optimal simulation of counter machines: the ACM case, this Journal, this issue, pp. 34—40.

, On the simulation of many storage heads by one, Technical Report IW 228, Mathematisch

Centrum, Amsterdam, 1983, preliminary version in Proc. 10th ICALP, Lecture Notes in Computer

Science 154, Springer-Verlag, Berlin, 1983, pp. 687-694.

[9]
[10]

